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Algorithms that estimate structural parameters from modal response using least-squares
minimization of force or displacement residuals generally do not have unique solutions
when the data are spatially sparse. The number and character of the multiple solutions
depend upon the physical features of the structure and the locations of the response
measurements. It has been observed that both the number of solutions and the sensitivity of
the parameter estimates to measurement noise is greatly influenced by the choice of
measurement locations. In this paper, we present a heuristic method to select a near-
optimal subset of measurement locations starting from a particular set of measurements, by
minimizing the sensitivity of the parameter estimates with respect to observed response.
The statistical properties of solution clusters generated from a Monte Carlo samples of
noisy data are used to determine the best candidate measurement to be dropped from the
current set. The process is repeated until solution sensitivity cannot be significantly
reduced. We also show that the laborious Monte Carlo computations can be avoided in
certain cases by using a direct computation of sensitivity estimates. A numerical example is
provided to illustrate the method and to examine the performance of the proposed
algorithm.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Certain parameter estimation schemes are based upon measured natural modes and
frequencies of a structure [1–3]. These parameter estimation methods use a parameterized
finite element model of the structure to estimate the values of the parameters using a least-
squares minimization of either the force residual or displacement residual of the vibration
eigenvalue problem. Generally, the accuracy of parameter estimation is affected by the
number of the measured natural modes, the location of the sensors that measure the modal
displacements, and the accuracy of the measurements obtained through the testing process
[4]. Often the number of modes that one can measure is limited by the physical features of
the structure, the method of excitation, and the absolute resolution of the sensors. The
accuracy of the sensors is, of course, always a key issue and one should endeavor to use the
most accurate instruments possible. However, the accuracy of the measurement is a
feature of the instrument that often cannot be significantly changed after the instruments
are selected and certainly cannot be changed after the measurements have been made.

Proper selection of the sensor locations is essential to ensure a successful parameter
estimation in the presence of the measurement error [5]. By adjusting sensor locations one
can improve the outcome of parameter estimation even if the accuracy of the
measurements and the number of measurable modes is fixed. There are two opportunities
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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to affect improvements within the context of sensor location. The first, and most obvious,
is in the initial deployment of the instruments prior to testing. The second opportunity
comes from the observation that it is not always better to have more measurement
locations because errors in locations that are highly sensitive to error can pollute the
parameter estimates. By using the measurements at a certain subset of model degrees of
freedom (i.e., by ignoring some of the measurements), one can reduce the overall error in
the parameter estimates that is caused by measurement noise.

Several heuristic methods have been proposed in the literature to select a near-optimal
set of measurement locations for noise-polluted data. These methods were originally used
in the context of selecting the sensor and actuator locations to control the dynamic
response of the structure [6–8]. In the context of nondestructive testing of structures
subjected to static excitation, Sanayei et al. [5] used Delorenzo’s method [6] to select a
subset of noisy force and displacement measurements to reduce the error in the parameter
estimates. Error sensitivity analysis was used to determine the smallest subset of applied
forces and measured displacements that would result in the least overall error in the
identified parameters. In particular, the largest element of the error sensitivity matrix of
the parameter estimation algorithm was used as an index to compare different candidate
sets of measurements. The sensitivities required by the algorithm were computed by the
finite difference method. This approach requires repeated evaluation of the input–output
error relationship to guide the improvement of the results. The method is limited to the
problem of establishing the initial instrument locations because the method does not
include a means of removing information from the measurement set.

In this paper, we present an algorithm for establishing a near-optimal deployment of
sensors for parameter estimation from modal response. The method is based on an
observation by Hjelmstad [4] that there is an essential coupling between the multiplicity of
solutions to the parameter estimation problem and the sensitivity to noise. The optimal
measurement set will be the one that is least sensitive to noise because these are the most
likely to cluster tightly around the noise-free solutions in simulations and are least likely to
be affected by estimation bias. The non-uniqueness, which helps to tighten the noisy
solution clusters, presents the obvious and important issue of sorting out which solution
corresponds to the best estimates for the given problem. Selecting the best estimate at each
step of the algorithm is crucial to successfully determining a near-optimal measurement
set.

The search for the best measurement set is an integer programming problem. We
present a heuristic method for executing this search to avoid exhaustive enumeration. This
simplification substantially reduces the computation required but means that there is no
guarantee that an absolute optimum will be found. We adopt the output-error least-
squares estimator of Banan and Hjelmstad [9] to develop the method, but suggest that the
parameter estimation step at the core of this algorithm could be done by any of a number
of alternative approaches. We use a simple random-starting-point method to find the
multiple minima at each parameter estimation step and identify the best solution as the
one for which the value of the parameter estimation objective function associated with the
mean of the parameter estimates for each Monte Carlo solution cluster is the least. The
eigenvalues of the covariance matrix of the parameter estimates associated with the
identified solution are used to determine which measurement location should be dropped
at each level of the measurement selection process.

We propose the substitution of a sensitivity-based estimate of the solution cluster
statistics that can be used in lieu of generating a Monte Carlo sample. When this is
appropriate one can realize substantial computational savings. The most important
feature of the proposed algorithm is that it generalizes well to problems for which
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visualization of the clustering is not possible (i.e., any problem with more than two or
three parameters). A numerical example is provided to illustrate the method and examine
the performance of the proposed algorithm.

2. STRUCTURAL MODELLING AND PARAMETER ESTIMATION FROM MEASURED
MODAL RESPONSE

Assume that the structure can be characterized by a linear finite element model with Nd

degrees of freedom. Following common practice let us further assume that the mass M is
constant and known in advance while the linear stiffness K of the structure is
parameterized by Np constitutive parameters x as

KðxÞ ¼ K0 þ
XNg

k¼1

X
m2Ok

fmðxkÞGm; ð1Þ

where K0 is the part of the stiffness matrix that is known a priori, fmðxkÞ is the (possibly
non-linear) constitutive parameter function, and Gm is the kernel matrix for element m in
the group Ok. The element kernel matrices essentially contain the geometrical information
of the structural element, and are independent of the element constitutive parameters.
Based on the parameter grouping scheme of Hjelmstad et al. [10], we assume that a group
of elements Ok. can be characterized by a single stiffness parameter xk. Further, we assume
that each of the elements in the structural model is associated with one of the parameter
groups {O1, O2,. . ., ONg

} where Ng is the number of different parameter groups in the
model. As such, the parameter associated with element m 2 Ok is xk.

To fix ideas, let us summarize the parameter estimation scheme used in the present
study. The output error estimator of Banan and Hjelmstad [9] is chosen for modal
parameter estimation because of its ability to handle spatially sparse data sets without
sacrificing computational efficiency. In addition, the output error estimator has a relatively
low bias for a wide range of measurement noise.

Free undamped vibrational response of a structure gives rise to the generalized
eigenvalue problem

KðxÞ/i ¼ li M/i ð2Þ

in which li and /i represent the eigenvalue (the square of the natural frequency) and the
eigenvector (mode shape) for the ith vibration mode. We shall assume that the natural
frequency and natural mode can be measured in a modal test.

Let #@@i be the set of degrees of freedom of the finite element model associated with
measurement locations on the test structure for mode i and let %@@i be the set of remaining
(unmeasured) degrees of freedom for that mode. The number of degrees of freedom that
are measured is denoted as #NN

i

d and the number of degrees of freedom that are not
measured is denoted as %NN

i

d : We can reorder and partition the eigenvector as

*//i � Pi
*//i ¼

#//i

%//i

" #
: ð3Þ

where Pi is a column-wise permutation of the identity matrix, #//i and %//i are the
submatrices of the eigenvector components associated with the measured and unmeasured
degrees of freedom, respectively, for mode i. In accord with the above permutation, the
structural system matrices can also be redefined as

*KKi � PiKP
T
i ;

*MMi � PiMPT
i : ð4Þ
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Let *MMi ¼ ½ #MMij %MMi
 be a partitioning of the mass matrix into a part #MMi associated with the
measured degrees of freedom @# i; and a part %MMi associated with unmeasured degrees of
freedom %@@i: We define the matrix Bi(x) as

BiðxÞ � *KKiðxÞ � li½Oij %MMi
; ð5Þ

where Oi is an Nd � #NN
i

d zero matrix. With these definitions we can rewrite equation (2) in
the equivalent form

BiðxÞ *//i ¼ li
#MMi

#//i: ð6Þ

The right-hand side of the above equation involves only the measured response #//i rather
than a complete response vector. Let Qi be the #NN

i

d � Nd boolean matrix that extracts the
components of the response vector associated with measured degrees of freedom from the
reordered eigenvector by the relationship #//i ¼ Qi

*//i: Premultiplying equation (6) by
B�1

i ðxÞ and operating with Qi results in a convenient measure of error for the output error
estimator [9]

eiðxÞ � #//i � liQiB
�1
i ðxÞ #MMi

#//i: ð7Þ

The output error estimator can now be cast as the least-squares optimization problem

Minimize
x2RNp

JðxÞ � 1

2

XNm

i¼1

dijjeiðxÞjj2; ð8Þ

where di is the weight factor for the ith mode and Nm5Nd is the number of modes with
measured natural frequencies and mode shapes. The weight factor di is assigned a priori to
reflect the relative confidence in the data for each mode and to establish an appropriate
scaling of the measurements. This optimization problem is often solved as a constrained
minimization with bounding values on the parameters. For the above parameter
estimation problem, an index of identifiability can be defined as b � Nm

#NNd=Np: This
index is simply the ratio of available data to the unknowns. If b51, the parameter
estimates will be unreliable. On the other hand, reliable parameter estimation is possible if
b51. The constrained least-squares problem (8) can be solved using a recursive quadratic
programming algorithm. The computations can be based on the Gauss–Newton
approximation of the Hessian of the objective to avoid computing second derivatives of
the error function ei(x). The implementation of the algorithm is described in detail by
Banan and Hjelmstad [9]. Note that for the present application the measurement locations
are taken to be the same for all modes. Hence, #@@i ¼ #@@; %@@i ¼ %@@; #NN

i

d ¼ #NNd ; and %NN
i

d ¼ %NNd in
the sequel.

3. NON-UNIQUENESS OF MODAL PARAMETER ESTIMATION

Structural parameter estimation algorithms from measured modal response generally do
not have unique solutions when the data are spatially sparse [4]. The extra solutions are
local extrema of the parameter estimation objective function and are generally extraneous.
In the literature, only a few articles have been devoted to the question of uniqueness of
solution in the structural parameter estimation problem. Some of the proposed parameter
estimation algorithms implicitly avoid the problem of non-uniqueness by finding the
solution nearest to a set of nominal model parameters. Such methods assume that the
desired parameters are close to the nominal parameters and that there are no spurious
solutions in the neighborhood of the correct solution. These assumptions are not tenable
for some parameter estimation problems, such as in the problem of damage detection,
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where the nominal values of the parameter estimates of the structural model are not
known in advance. One approach to the non-uniqueness problem is to use a random
starting point scheme in conjunction with the objective minimization algorithm to find all
of the multiple minima of the parameter estimation problem [4]. With a sufficiently large
sample of starting points, one can assess the multiplicity of solutions with confidence.

Hjelmstad [4] observed that for noise-free simulated measurements the correct solution
can generally be distinguished from the extraneous solutions by a considerably larger and
deeper basin of attraction, which is indicated both by a larger fraction of solutions
attracted from the random starting points and by a lower average value of the objective
function. The situation is more complicated for noise-polluted data, where parameter
estimates are scattered due to noise. The identified multiple solutions exhibit different
levels of sensitivity to random noise for different patterns of measurement. Further, the
sensitivity of the parameter estimates to noise in the data depends upon the number and
density of solutions to the parameter estimation problem. Nevertheless, the study showed
that there is a clear connection between multiple solutions associated with noise-free data
and the distinct clusters of results with noisy data. Because solution multiplicity is so
important to the proposed algorithm we shall describe the random starting point method
in a bit more detail.

The solution of the parameter estimation problem described by equation (8) depends
upon the topography of the objective function J(x). When the measured data are spatially
sparse, the objective function is usually non-linear and multiple minima are possible. Each
local minimum represents a candidate solution to the parameter estimation problem. The
final outcome of the iterative parameter estimation process depends on the initial guess of
parameters x0 that must be specified to start the iteration. Each starting point converges to
the minimum within its basin of attraction (that is the definition of the basin of attraction).
The situation is illustrated in Figure 1 for a three-dimensional parameter space. In this
illustration, we assume that there are two solutions, xA and xB. From the seven starting
points {x1

0, x2
0, . . ., x7

0}, five of them converge to one or the other of the two solutions while
starting points x2

0 and x5
0 get bound at the constraints x3 ¼ 0 and x2 ¼ xU

2 ; respectively. In
the illustration the area inside the dashed rectangular parallelepiped represents a feasible
domain of the parameter estimates determined by the lower bounds {xL

1 ; xL
2 ; xL

3 } and the
upper bounds {xU

1 ; xU
2 ; xU

3 }, respectively. These bounds must be selected properly in order
Figure 1. The result of parameter estimation from different starting points.
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for the parameter estimates to make any physical sense. Often, parameter values can be set
to zero as natural lower bounds. The upper bounds, however, must be selected so that they
provide a sufficiently large domain for possible solutions to the parameter estimation
problem.

Since it is impossible to know in advance the number of solutions for equation (8) and
their distribution, we adopt the random starting point scheme proposed by Hjelmstad [4]
wherein a sample of Nr random starting points {x1

0, x2
0, . . ., x0Nr

} is used to seed the search
for solutions. Each of these starting points that converges will find a solution to the
parameter estimation problem. The collection of these solutions is a subset of the complete
solution set. To assess the multiplicity of solutions with confidence, one must use a
sufficiently large sample of starting points.

In this study, we assume prior knowledge of the baseline structural model. Hence, we
can select our random starting points from within a bounded region centered at the point
associated with the baseline parameter values, x*. To avoid starting from points that are
likely to get stuck at bounding constraints, the ith starting point is chosen to lie within a
hyper-ellipsoid centered at x*. Let xj

0 denote the ith starting point in the Np-dimensional
parameter space. The ith starting point is allowed into the sample only if

ðx0i � x
ÞTAðx0i � x
Þ41; ð9Þ

where A denotes a scaling matrix, which is defined as A � diag½1=x
2
1 ; 1=x
2

2 ; . . . 1=x
2
Np

: The

idea of restricting the starting parameter values is shown schematically for a three-
dimensional parameter space in Figure 2 where x1

*, x2
*, and x3

* are the three components of
the solution point associated with the baseline parameters. In the figure, the area inside the
rectangular parallelepiped bounded at {xU

1 ; xU
2 ; xU

3 } represents the feasible domain of the
parameter estimates. The random starting points can be easily generated one component
at a time using a random number generator and then accepted or rejected according to
equation (9).
Figure 2. The schematic representation of the simulated random starting points.
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4. MEASUREMENT ERROR SENSITIVITY ANALYSIS OF MULTIPLE SOLUTIONS

The multiplicity of solutions in modal parameter estimation is further complicated by
the presence of noise in the measured data. Typically, different sets of noisy measurements
will yield different outcomes of parameter estimation due to the effect of noise on the
topography of the objective function J(x). To account for the sensitivity of system
parameters due to noise, Shin and Hjelmstad [11] adopted a data perturbation scheme to
generate a Monte Carlo sample of parameter estimates by adding a random perturbation
with known statistical properties to the measured data. Let the jth component of the
perturbed eigenvector be calculated from the jth component of the ith measured
eigenvector as

*//ij ¼ #//ijð1þ aZijÞ; ð10Þ

where Zij is a uniform random variate in the range [�1, 1] and a is the noise amplitude.
This model represents band–limited white noise, but can easily be modified to include
colored noise. The data perturbation scheme can be used to obtain the sensitivity
information for each of the (noise-free) multiple solutions identified from the random
starting point scheme by using the individual solution as a fixed starting point for each
perturbed data set. Since each perturbation iteration requires one execution of the
parameter estimation algorithm, the Monte Carlo approach can be computationally
intensive as the number of perturbation iterations becomes large.

In the Monte Carlo method, once a sample of solution points has been created using the
random-starting-point and the data-perturbation schemes, the correct solution must be
identified from the available solutions in the sample. In general, each of these solution
points will be clustered in the vicinities of the noise-free solutions as shown in Figure 3 for
a three-dimensional parameter space. In this figure we assume that four solution points
{xA, xB, xC, xD} have been identified from random starting points. The groups of solutions
essentially represent clustering of local minima of the perturbed objective functions. The
distribution of the solution points within each cluster location indicates the sensitivity of a
local minimum of the objective function J(x) due to the random perturbation. As such,
each individual cluster can be regarded as a set of perturbed solutions to the parameter
estimation problem.
Figure 3. Noisy solution points in three-dimensional parameter space.
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In general the cluster of solutions associated with the correct solution can be
distinguished from the extraneous ones by a considerably larger and deeper basin of
attraction. The latter condition is indicated by a lower averaged objective function. A
precise set of parameter estimates is the one that is insensitive to noise and is indicated by
compactness of the cluster. For a simple structural model with two or three parameters,
the measure of compactness can be obtained directly from the plot of the solution points
on a three-dimensional parameter space. However, this is not the case for an Np-parameter
model where such a plot is not feasible. As such, a mathematical description of a cluster is
required.

One can use the statistical properties of the solutions inside a cluster to identify its
shape. For example, the mean and standard deviation can be used to measure bias and
spread of the solutions due to the data perturbation respectively. However, as illustrated in
Figure 4 for a two-parameter case, the standard deviation may not provide sufficient
information to identify the correct shape of a cluster. On the other hand, the eigenvalues of
the covariance matrix of the estimated parameters provide a more accurate basis for
estimating the appearance of a cluster. The covariance matrix of parameters for cluster can
be estimated as

Rx ¼ 1

N

XN

i¼1

xi � xi �
1

N

XN

i¼1

xi �
1

N

XN

i¼1

xi; ð11Þ

where N is the number of solutions belonging to the cluster and � indicates the tensor
product. In general, the parameter estimates are accurate if the eigenvalues of the
covariance matrix are small.

As previously mentioned, the Monte Carlo method is computationally expensive
because the non-linear optimization process is repeated many times. Alternatively, one can
obtain the sensitivity of parameter estimates to random perturbation by using the
optimum sensitivity approach of Araki and Hjelmstad [12]. In this method, the mean and
covariance of the system parameters are estimated using the optimum sensitivity
derivatives, which can be computed by direct differentiation of the Kuhn–Tucker
optimality criterion. As such, the method is computationally efficient compared with the
Monte Carlo approach. In addition, this approach is generally more efficient than the
finite difference approach used by Sanayei et al. [5], and does not require the assessment of
numerical errors. However, the optimum sensitivity method can be unreliable when the
system output-system parameters relation is highly non-linear, in which case the Monte
Carlo method is more robust (as discussed in reference [12]). In the current study, we
Figure 4. Two different statistical description of a cluster. (a) si, standard deviations; (b) li, eigenvalues of
covariance.
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implement the optimum sensitivity method to determine the sensitivity of the parameter
estimation solutions with respect to the data perturbation scheme, as described below.

For the sake of the present development let us define a measurement vector #UU to be the
concatenation of the measurements from each measured mode of mode shapes as
#UU
T � f #//T

1 ;
#//
T

2 ; . . . ;
#//
T

Nn
g: Let #UU denote the kth component of #UU and note that the range of

the index is k=1,2,. . .,Nm
#NNd. For the perturbation method [11, 12] we introduce a

perturbed vector of the measured mode shapes *UU that have the following mean and
covariance relationship with the measured values:

#UU ¼ E½ *UU
; RU ¼ E½ð *UU � #UUÞ � ð *UU � #UUÞ
; ð12; 13Þ

These properties are established from the properties of the random noise that is
superimposed on the measured values to create the perturbed values. For a certain
solution x that has been determined using the random starting point algorithm, we can
estimate the mean %xx and covariance R

x of parameter estimates due to the measurement
perturbation using the following approximation [12]:

%xx � E½xð *UUÞ
 � xð #UUÞ þ 1

2

XNm
#NNd

k¼1

XNm
#NNd

i¼1

x;ki ð #UUÞRU
ki; ð14Þ

Rx � E½ðxð *UUÞ � %xxð *UUÞÞ � ðxð *UUÞ � %xxð *UUÞÞ


�
XNm

#NNd

k¼1

XNm
#NNd

l¼1

x;k ð #UUÞ � x;l ð #UUÞRU
kl : ð15Þ

In the above equations, the first and second order optimum sensitivity derivatives are
indicated by x;k � @x=@ #UUk and x;kl � @2x=@ #UUi@ #UUl respectively. As shown by Araki and
Hjelmstad [12] these derivatives can be obtained simply by solving systems of linear
equations (one for each) involving the gradients of the error function ei(x) defined in
equation (7). Complete details of this computation as well as comparisons with the Monte
Carlo approach are described in reference [12]. If the perturbed measurements are created
by imposing uniform random noise of amplitude a; in accord with equation (10),
equations (14) and (15) simplify to

%xxðaÞ ¼ xð #UUÞ þ a2

6

XNm
#NNd

k¼1

x;kk ð #UUÞ #UU2

k; ð16Þ

RxðaÞ ¼ a2

3

XNm
#NNd

k¼1

XNm
#NNd

l¼1

x;k ð #UUÞ � x;l ð #UUÞ #UUk
#UUl : ð17Þ

This noise model is used throughout the remainder of this paper.
The mean and covariance of the parameter estimates can be computed for each of the

candidate solutions identified from the random starting point scheme. In this manner we
can evaluate the nature of the clustering of noisy solutions for each candidate solution. In
the present application we need to identify the best solution from among the several
candidates for each measurement set and from those best candidates select the one least
sensitive to noise. The correct solution x** can be obtained as the set of parameters %xx

associated with the global minimum Jð %xxÞ: Note that the identification of this best solution
is different for the Monte Carlo approach as opposed to the statistical estimates (which is
simply given as the estimate computed from the measured data). In the Monte Carlo
approach the mean of the estimates is generally not equal to the estimate from the
measured data.
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5. SELECTION OF MEASUREMENT LOCATIONS FOR ERROR REDUCTION

In this section, we describe a heuristic method that makes use of the error sensitivity
analysis of the previous section to select a near-optimal subset of the initial measurement
locations. The method takes into account the possibility of solution multiplicity of the
modal parameter estimation problem. Unlike the finite difference approach of Sanayei
et al. [15], Monte Carlo simulations are not required to establish the input–output error
relationships of the identified parameters in the present method. It should be noted that
the identified subset of measurement locations is not guaranteed to minimize the error in
the parameter estimates. Selection of the optimal subset of measurements would require an
exhaustive search of the different combinations of the measured degrees of freedoms The
exact solution of the integer programming problem is prohibitive. The present method is
intended to guide the selection of a near-optimal subset of the measurement locations for a
relatively modest computational effort. While this algorithm will seldom find the actual
optimum it will almost always lead to an improved solution.

Let us suppose that an initial set of measurement locations #UU0 is given as known
information. One can find the global optimum x

ð #UU0Þ corresponding to #UU0; as described
in the previous section. The eigenvalues of the covariance matrix of parameter estimates
Rx

 ; evaluated from equation (17), quantify the sensitivity of x

 to the random
perturbations. As mentioned earlier, the estimated parameters are expected to be accurate
when these eigenvalues are small. In the current algorithm, we use the value of the
objective function and the eigenvalues of the covariance matrix associated with the global
minimum to measure the accuracy and the sensitivity of the parameter estimation results
respectively. In particular, we propose a search scheme to find a set of measurement
locations that minimizes Jðx

Þ and the sum of the squares of the eigenvalues of Rx

 :

The selection of a near-optimal subset of measurement locations can be described as an
integer programming process as illustrated in Figure 5. In the illustration, the
(global parameter estimation) (GPE) algorithm indicates the process of finding the global
minimum of the parameter estimation objective function using the random starting point
Figure 5. Algorithm for selection of a near-optimal subset of measurement locations.
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scheme along with the associated perturbation sensitivity analysis. Let the sum of the
squares of the covariance matrix of parameters x be defined as

s �
XNp

i¼1

l2i ðRxÞ: ð18Þ

When a measurement location is dropped, the mode shape information at the dropped
location is disregarded for all measured modes.

The proposed algorithm provides explicit information on the sensitivity of parameter
estimates (as well as the objective function) to the level of measurement noise for each of
the measurement patterns investigated. The value of the objective function is used to
guarantee the improvement in the values of the parameter estimates. There is no
significant computational burden associated with recomputing the objective function for a
selected subset of measurements. When the system output–system parameter relationship
is highly nonlinear (e.g., when the level of uncertainty in the measurement is great or when
the measured data are very sparse) the Monte Carlo approach to the sensitivity analysis
will give better results.

In practice, the proposed strategy for finding the near-optimal set of measurement
locations can be used either in a pretest simulation study prior to a non-destructive testing
or to reduce error of the parameter estimation results for a given data set. The starting
point for the pretest study might be a complete measurement set but would probably work
best by starting from an assortment of different feasible measurement sets. The various
solutions can then be evaluated to account for unmodeled phenomena.

6. A NUMERICAL EXAMPLE

In this section, we examine the performance of the present algorithm through a
simulation study. The example structure is the six-story shear building with fixed base
shown in Figure 6. The structural model has six degrees of freedom, the horizontal
translations at the story levels, all of which are included in the initial measurement set. The
structure is parameterized with six parameters, x={x1, x2,. . ., x6}

T. The stiffness of the ith
Figure 6. The six-degree-of-freedom shear building.
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story is given by ki=xik0. The nominal properties of the structure are chosen such that k0/
m0=1�2 s2. Let us assume that the actual parameters associated with the current
conditions of the structure are x={2�0, 2�0, 2�0, 1�0, 1�0, 1�0}T. Note that the prior
knowledge of the actual values of parameters is not required in the current algorithm.
Within the simulation context these values can be used to judge the outcome of the
parameter estimation algorithm. In the current study, we assume that the baseline
parameters associated with the initial structure are given as x*={3�0, 3�0, 2�0, 2�0, 1�0,
1�0}T. The specified values of baseline parameters are used in the random starting point
scheme to identify the multiple solutions to the parameter estimation problem for each
pattern of measurements investigated. These values can be selected to be different from the
above set without significantly changing the results of the simulation study. The current
sets of parameters reflect a damage scenario in which x1 and x2 have decreased by 33%
and x4 has decreased by 50%.

The results from a free vibration analysis of the current structural model are shown in
Table 1 where the ith mode shape wi is computed from Kð #xxÞwi ¼ liMwi and is scaled such
that wT

i MwT
i ¼ 1: The denomination of ‘‘level’’ refers to story level, as defined in Figure 6.

The natural frequencies and mode shapes of all six mode, as listed in this table, are taken
as our nominal initial data. We generate simulated ‘‘measured data’’ by adding random
noise with known statistical properties to the noise-free data. The kth component of the lth
noisy measurement vector from the kth component of the computed noise-free
measurement vector is

#ffkl ¼ cklð1þ ezklÞ; ð19Þ
where zkl is a uniform random variate in the range [�1, 1]. The amplitude e will be used in
our study to quantify the level of noise in the measurement. Throughout the study we will
assume that the natural frequencies can be measured with negligible error and are
considered to be noise-free.

During the measurement selection process in the algorithm, different patterns of
measurements are used as input to the parameter estimation problem. Each case that we
examine will be designated by the degrees of freedom which are measured. For example,
the measurement case 12–4–6 uses modal displacements at levels 1, 2, 4 and 6 and does not
use measurements at levels 3 and 5. In all measurement cases, all of the six available modes
will be used.

In the current simulation study, we generate 100 noisy data sets based upon the noise-
free data from Table 1 in accord with equation (19) using three levels of noise: e=5, 10 and
Table 1

Noise-free data from free vibrational analysis of the current structure

First
mode

Second
mode

Third
mode

Fourth
mode

Fifth
mode

Sixth
mode

Natural frequency (Hz) 0�05350 0�14050 0�22465 0�30364 0�43324 0�45008
Mode shape

Level 1 0�03263 �0�09481 �0�10439 0�12439 �0�18499 �0�17133
Level 2 0�06373 �0�15884 �0�12212 0�06013 �0�00938 �0�22824
Level 3 0�09183 �0�17129 �0�03847 �0�09533 0�18452 �0�13273
Level 4 0�13937 �0�08495 �0�19270 �0�11710 �0�14704 �0�02988
Level 5 0�17380 0�05656 0�10393 0�21631 0�09464 �0�00666
Level 6 0�19186 0�16133 �0�15740 �0�10639 �0�03265 0�00118
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20% respectively. Each of the simulated noisy data sets are used as input as the initial
measurements from which the algorithm is performed to selectively eliminate the measured
degrees of freedom until the near-optimal set of measurement locations is obtained. The
measurement subset to which the algorithm will converge depends upon the specific
features of the data that drives the algorithm. Therefore, it is interesting to see how the
algorithm responds to different incarnations of noise. We make this assessment by
determining the outcome of applying the algorithm for each of the 100 different
incarnations of noisy data.

For each noisy measurement case to which the algorithm is applied we use 100 random
starting points to identify multiple solutions to the parameter estimation problem. Hence,
each column of Table 2 represents 10 000minimizations (100 random starting points times
100 noisy measurements) of the objective function J(x) of equation (8). The global
minimum x** for each data set is located as described previously. We compute the mean
and the covariance matrix of the parameter estimates associated with the global minimum
in accord with equations (16) and (17) respectively. Note that the amplitude of
perturbation a in these equations is selected as the same as the level of noise e present
in the measured data. In the present simulations, we assume the a priori knowledge of the
level of uncertainty in the measurement. Thus, the amplitudes of perturbation can be
selected as a=0�05, 0�10 and 0�20 to characterize the bias and scatter of parameter
estimates for the 5, 10 and 20% noisy measurement cases respectively.
Table 2

Fraction of 100 noisy data sets converging to different patteerns of measurements for 5, 10,
and 20% level of measurement noise

5% noise 10% nose 20% noise

Case
number

Measured
d.o.f.s Fraction

Case
number

Measured
d.o.f.s Fraction

Case
number

Measured
d.o.f.s Fraction

1 123–56 0�14 1 1– – – –– 0�22 1 1– – – –– 0.19
2 1– – – – – 0�14 2 123–56 0�15 2 123–56 0�17
3 – –3– – – 0�11 3 – –3– – – 0�09 3 – –3– – – 0�14
4 –23–5– 0�07 4 12– –5– 0�08 4 –23–5– 0�12
5 –2– – – – 0�07 5 –23–5– 0�08 5 12– – – – 0�07
6 – – –4–6 0�06 6 –2– – – – 0�05 6 –2– – – – 0�06
7 12– –5– 0�05 7 – – –4–6 0�04 7 12–4– – 0�04
8 – –34–6 0�05 8 12– – – – 0�04 8 1–345– 0�03
9 1–34–6 0�04 9 – – –4– – 0�04 9 – – –4– – 0�03
10 12– – – – 0�04 10 12–45– 0�03 10 – –34–6 0�02
11 1– –4–6 0�03 11 –234–6 0�03 11 – – –4– – 0�02
12 12–4– – 0�03 12 12–4– – 0�03 12 – –3–5– 0�02
13 – – –4– – 0�03 13 – – – –5– 0�02 13 – – – –5– 0�02
14 123–5– 0�02 14 1234– – 0�01 14 123–5– 0�02
15 12–45– 0�02 15 123–5– 0�01 15 123–5– 0�01
16 1–345– 0�02 16 1–345– 0�01 16 1–34–6 0�01
17 1– –45– 0�02 17 1–34–6 0�01 17 –234–6 0�01
18 1– –4– – 0�02 18 –2345– 0�01 18 – – –4–6 0�01
19 12–4–6 0�01 19 –23–56 0�01 19 12– – – – 0�01
20 1–3–56 0�01 20 1–3– –6 0�01 20 1– – – –6 0�01
21 –234–6 0�01 21 – –34–6 0�01
22 –2–45– 0�01 22 – –3–5– 0�01

23 – – –4–6 0�01
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Several measures of identification error are used to compare the parameter estimation
results of the initial and the identified patterns of measurements. We compute the average
of x** for a specified pattern of measurements based upon a certain subset of the
simulated noisy database as

%xx

 ¼ 1

Nt

XNt

t¼1

x

t ; ð20Þ

where x

t denotes the parameter estimates associated with the global minimum for the tth
noisy measurements of the Nt simulated data sets under consideration. With the definition
of %xx

; the average root quadratic bias (RQB) can be defined as

RQB ¼ jj %xx

 � #xxjj
Npjj #xxjj

ð21Þ

in which #xx are the actual parameters for the current structural model and Np is the number
of estimated parameters in the model. The quadratic bias is a measure of the distance
between the expected value of the estimates %xx

 and the actual parameters #xx: To measure
the scatter of the parameter estimates with respect to the actual parameters, we use the
average root mean square error (RMS), which is given by

RMS ¼ 1

Npjj #xxjj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

XNp

t¼1

jjx

t � #xxjj2
vuut : ð22Þ

Notice that both RQB and RMS are normalized with respect to the norm of the actual
parameters.

The results of an error sensitivity analysis for the case of complete measurements
(123456) are shown in Figure 7. In the figure, the values of the mean of stiffness parameters
obtained from equation (16) are plotted with respect to 100 noisy data sets for different
levels of measurement noise. It should be noted that the solution to the parameter
estimation problem for the case of complete measurements is unique for each particular
noisy data set and, hence, the multiplicity of solution is not an issue. Observe that many of
the parameter estimates are quite far from the actual values, that there is a tendency for
the parameter estimation algorithm to overestimate, and that the variation of the
parameter estimates increases with the level of noise in the measurements. The case with
20% noise level shows the greatest scatter and bias of the parameter estimation results.
The complete-measurements case will be used as a basis of comparison in the sequel.

The measurement subsets identified as near-optimal by the algorithm using randomly
generated data sets are shown in Table 2. The table reports the outcome of applying the
algorithm to 100 noisy data sets generated for each different level of noise. Each of the 100
runs of the algorithm identifies a near-optimal measurement set. Table 2 indicates the
fraction of the 100 trials that each of the various measurement subsets was identified as the
best one. For example, the measurement case 123-56 was identified as best for 14 of the
100 noisy data sets for the 5% noise level. As such, this set was the most frequently
identified by the algorithm as the best deployment of instruments for the given data. The
table ranks the measurement subsets according to the fraction of times each was identified
as best.

Let us examine in more detail the pattern of measurements 1- - - - - with 10% noise.
Table 2 indicates that this pattern was identified as best from 22% of the data sets.
Figure 8 shows the evolution of the algorithm for several of the data sets. In this figure, we
plot the sum of the squares of the eigenvalues of the covariance matrix for parameter
estimates associated with different sequences of measurement locations during the



Figure 7. Variation of the mean of parameter estimates with respect to different noisy data sets using complete
measurements with three levels of noise (a) 5% noise, (b) 10% noise, and (c) 20% noise.
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elimination process. In the figure, li denotes the ith eigenvalue of the covariance matrix.
One can see that the sum of the squares of the eigenvalues decreases during the
measurement selection process for each of the simulated noise trials. The reduction of the
eigenvalues of the covariance matrix indicates that the outcome of the parameter
estimation problem corresponding to the identified measurement locations are less
sensitive to noise.



Figure 8. Sensitivity of the parameter estimates during the measurement selection process for each noisy data
set with 10% level of noise that converged to the measurement case 1- - - - - .

Figure 9. The identification errors of the parameter estimates for the complete–measurement case (Case 0) and
the identified subsets of measurement locations from Table 2 using three different levels of noise: (a) e=5%;
(b) e=10%; (c) e=20%.
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The identification errors of the parameter estimation results as defined by equations (21)
and (22) for the complete measurement case and the identified subsets of measurement
locations from Table 2 are illustrated in Figure 9. In the illustration, case 0 denotes the
complete measurement case. The average (RQB) and the average (RMS) are calculated
based on the noisy data sets that converged to each particular measurement case. One can
observe that all measurement cases reported in Table 2 perform well for all levels of noise
as indicated by the lower values of RMS and RQB compared to the complete-
measurement case. The measurement case 1- - - - - shows the least identification error for all
levels of noise. Nevertheless, there is a tendency for different noisy data sets to converge to
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different subsets of measured locations. A fixed subset of degrees of freedom will not be
optimal for all cases of noisy measurements.

7. CONCLUSIONS

The success of a parameter estimation method depends on the behavior of the algorithm
in the presence of measurement errors. One can often reduce the error in the parameter
estimation by neglecting certain information. We have presented a general framework
based on error sensitivity analysis to obtain a near-optimal subset of measured degrees of
freedom that improve the parameter estimation results. The method is based upon the
observation that there is a tradeoff between sensitivity to noise and multiplicity of
solutions to the parameter estimation problem. A measurement set with more spatial
sparsity will generally have more candidate minima associated with the least-squares
minimization problem. Often those solutions are less sensitive to noise, as evidenced by
tighter clustering of Monte Carlo samples of estimates generated from a fixed noise model.
On the other hand, some deployments of instruments are intrinsically bad because they
miss important features of the response.

The purpose of the algorithm proposed here is to capitalize on the observation about
noise sensitivity, thereby substantially reducing concerns about bias in the non-linear least-
squares estimator. There are three primary challenges: (1) identifying the best solution
from among the multiple solutions, (2) efficiently estimating the sensitivity of the estimates
to noise, and (3) devising a strategy for automatically identifying the best measurement set.
We have employed the method of random starting points to locate the (multiple) solutions
to the parameter estimation problem and identify the best solution as the one with the
deepest basin of attraction. We show how the mean and covariance of estimates, needed to
drive the selection algorithm, can be generated by the Monte Carlo method. We also
suggest that this step can be made much more efficient using the direct sensitivity
computations proposed by Araki and Hjelmstad [12]. The Monte Carlo method can be
used to verify the sensitivity estimates and should replace these estimates for highly non-
linear cases. With a single set of noisy data, the algorithm will search for a near-optimal
subset of measurement locations that yields an improved set of parameter estimates with
lower sensitivities to the measurement noise.

We have illustrated through a simple example that the data perturbation scheme and the
optimum sensitivity analysis can be used to select noisy subsets of measurement locations
that will produce small errors in the parameter estimates. The algorithm performed well in
the illustrated example for a wide range of noise. Although we have not considered the
effect of modal sparsity on the parameter estimates in the current study, one can easily
imagine an extension of the proposed algorithm in which the measurement locations are
not treated equally for all modes. The complexity of the search algorithm would increase,
but other new possibilities (e.g., elimination of entire modes) would emerge.
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